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Route de Saclay, 91128 Palaiseau Cedex, France

2

September 28, 20093

Abstract4

This note describes the details of a simulation study of the Higgs boson production5

for processes in which the Higgs is produced together with a well measurable di-lepton6

system using the current proposal of the ILD detector. The analysis is optimised for the7

measurement of the Higgs-strahlung process, i.e. e+e− → HZ. The cross section can be8

determined with a precision of 2-3% and by combining the decay channels a precision of9

∼30 MeV is obtained for the mass of the Higgs boson. The background can be largely10

reduced and the analysis exhibits a sensitivity to the configuration of the accelerator.11

1 Introduction12

The understanding of electro-weak symmetry breaking is intimately coupled to the study13

of the Higgs boson. It arises as a consequence of the observation of massive gauge bosons14

which can be generated by the spontaneous breaking of the SU(2)×U(1) symmetry of the15

electroweak Lagrangian.16

If existing, a Higgs boson with a mass MH of 120 GeV as favoured by recent analyses of17

electro-weak data [1] will be discovered at the LHC or even at the TEVATRON. The ILC will18

allow for the detailed investigation of the nature of the Higgs boson as has been demonstrated19

in [2, 3, 4] and references therein. The relevant processes for the present study are the recoil20

reaction e+e− → HZ → Hff̄ (where f=leptons and quarks), also called Higgs-strahlung,21

or e+e− → He+e−, also called ZZ fusion. The Feynman diagrams are shown in Figure 1.22

Please note that the cross section of the Higgs-strahlung dominates largely over that of the23

ZZ fusion. Hence, the analysis will be optimised for the measurement of the Higgs-strahlung24

process.25

By detecting the decay products of the Z boson, the introduced processes and in partic-26

ular the Higgs-strahlung process allow for the search of Higgs signals without any further27

assumption on its decay modes. In contrast to the LHC, the initial state is very well known28

at the ILC. These two items together allow for an unbiased search for the Higgs boson also29

called Model Independent Analysis which is only possible at a Lepton Collider such as the30

ILC. The presumably cleanest way to study the Higgs is given by the process e+e− → HZ31
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Figure 1: Higgs boson production via the Higgs-strahlung process (left) and ZZ fusion (left)
and associated final state fermions with opposite charge at e+e−-colliders.

and the subsequent decay Z → µ+µ− or Z → e+e−, i.e. searching for the decay leptons of the32

well known Z boson. These channels, also named µµX-channel and eeX-channel hereafter,33

will be examined in detail in this note for a centre-of-mass energy of
√

s = 250GeV as pro-34

posed in the definition of the benchmark scenarios for the Letter of Intent Studies for ILC35

detectors [5].36

2 ILD Detector37

A detailed description of the current model of the ILD detector can be found elsewhere [6].38

The z-axis of the right handed co-ordinate system is given by the direction of the incoming39

electron beam. Polar angles given in this note are defined with respect to this axis. The most40

important sub-detectors for this study are described in the following.41

• The vertex detector consists of three double layers of silicon extending between 16 mm42

and 60 mm in radius and between 62.5mm and 125mm in z direction. It is designed43

for an impact parameter resolution of σrφ = σrz = 5⊕ 10/(psin
3
2 θ) µm.44

• The measurement of charged tracks is supported by an inner Silicon Tracker (SIT) in45

the central region and by a set of silicon disks in forward direction, i.e. towards large46

absolute values of cosθ.47

• The ILD detector contains a large Time Projection Chamber (TPC) with an inner48

sensitive radius of 395 mm and an outer sensitive radius of 1743 mm. The half length49

in z is 2250 mm. Recent simulation studies confirm that the momentum of charged50

particle tracks can be measured to a precision of δ(1/PT ) ∼ 2× 10−5 GeV−1. Here PT51

denotes the transverse component of the three momentum P of the particles.52

• The electromagnetic calorimeter is a SiW sampling calorimeter. Its longitudinal depths53

of 24 X0 allows for the complete absorption of photons with energies of up to 50 GeV54
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as relevant for the studies here. The simulated energy resolution of the electromagnetic55

calorimeter is ∆E
E = 15%/

√
E [GeV]56

• The hadronic calorimeter surrounds the electromagnetic calorimeter and comprises 4.557

interaction length λI . Two proposals exist for the hadronic calorimeter. A digital58

variant consisting of steel absorbers and gas RPC chambers with a pixel size of 1×1 cm2
59

as active material. The second one features scintillating tiles with size of 3× 3 cm2 as60

active material. The latter option is employed in the present work.61

In the current design of the ILC the initial beams enter with a crossing angle of 14 mrad.62

This crossing angle is not taken into account in the present study.63

3 Event Generation, Detector Simulation and Event Recon-64

struction65

All data analysed for this note have been centrally produced by the ILD Group in au-66

tumn/winter 2008/09 based on generator files known as SLAC samples. For the event gen-67

eration the version 1.40 of the event generator WHIZARD [7] has been used. The incoming68

beams have been simulated with the GUINEA-PIG package [8]. The energy of the incoming69

beams is smeared with an energy spread of 0.28% for the electron beam and with 0.18%70

for the positron beam. In addition the energy is modulated by beamstrahlung. The impact71

on the precision of the physics result of this uncertainly will be discussed below. The gen-72

erated signal and background samples are given in the Table 1 for the beam polarisation mode73

74

e−Le+
R: Pe− = +80% and Pe+ = −30%75

and in Table 2 for the beam polarisation mode76

77

e−Re+
L : Pe− = −80% and Pe+ = +30%.78

The initially generated samples of the signal are combined such that they yield L = 10 ab−1
79

in each of the polarisation modes. For background samples the integrated luminosity is80

mostly larger than 250 fb−1. Where it is smaller, it is still provided that the samples contain81

considerable statistics. Note, that in Tables 1 and 2 the background samples have been82

grouped by the resulting final state1.83

Due to the large cross section of the Bhabha Scattering, i.e. e+e− → e+e− and muon pair84

production, i.e. e+e− → µ+µ−, pre-cuts have been applied in order to reduce the simulation85

time. These cuts are given in Table 3 and will be later on referred to as Pre-cuts.86

Here, Me+e− and Mµ+µ− , respectively, are the invariant mass of the di-lepton system for87

signal events, while PT e+e− and PTµ+µ− denote the transverse momentum calculated from88

the vectorial sum of the two leptons.89

The generated events are subject to a detailed detector simulation. The simulation is90

performed with the MOKKA [10] software package which provides the geometry interface91

to the GEANT4 [11] simulation toolkit. The event reconstruction is performed using the92

MarlinReco framework. For this study the versions as contained in the Software Package93

1Please note, that due to a bug in the luminosity spectrum in the initial generation, the background has
been re-weighted to the correct spectrum according to [9]
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Process Cross-Section
µµX 11.67 fb
µµ 10.44 pb (84.86 fb)
ττ 6213.22 fb

µµνν 481.68 fb
µµff 1196.79 fb

Process Cross-Section
eeX 12.55 fb
ee 17.30 nb (357.14 fb)
ττ 6213.22 fb

eeνν 648.51 fb
eeff 4250.58 fb

Table 1: Processes and cross sections for polarisation mode e−L e+
R. The signal is indicated

by bold face letters; the cross-section in the parentheses of e+e− and µ+µ− are that after
Pre-Cuts, see Table 3 for the Pre-Cuts definition.

Process Cross-Section
µµX 7.87 fb
µµ 8.12 pb (58.26 fb)
ττ 4850.05 fb

µµνν 52.37 fb
µµff 1130.01 fb

Process Cross-Section
eeX 8.43 fb
ee 17.30 nb (335.47 fb)
ττ 4814.46 fb

eeνν 107.88 fb
eeff 4135.97 rb

Table 2: Processes and cross sections for polarisation mode e−Re+
L . The signal is indicated

by bold face letters; the cross-section in the parentheses of e+e− and µ+µ− are that after
Pre-Cuts, see Table 3 for the Pre-Cuts definition.

e+e− → e+e− e+e− → µ+µ−

|cosθe+/e− | < 0.95
Me+e− ∈ (71.18, 111.18) GeV Mµ+µ− ∈ (71.18, 111.18) GeV

PT e+e− > 10 GeV PTµ+µ− > 10 GeV
Mrecoil ∈ (105, 165) GeV Mrecoil ∈ (105, 165) GeV

Table 3: List of Pre-cuts applied to Bhabha scattering and muon pair production in order to
reduce the simulation time.

ILCSoft v01-06 [10] are employed. The main output of this framework for the present study94

are the so-called LDC Tracks which is a combination of track segments measured in the95

vertex detector, the Silicon Inner Tracker and the TPC or Forward Tracking Disks. Their96

momenta are compared with the energy of calorimeter clusters composed from signals in the97

electromagnetic and hadronic calorimeter for the particle identification.98

4 Signal Selection and Background Rejection99

The signal is selected by identifying two well measured leptons in the final state which yield
the mass of the Z boson. The mass Mrecoil of the system recoiling to the di-lepton system is
computed using the expression:

M2
recoil = s + M2

Z − 2EZ

√
s

Here MZ denote the mass of the Z boson as reconstructed from the di-lepton system and100

EZ its corresponding energy. A number of background processes have to be suppressed.101

Techniques of background suppression similar to those presented in this note were already102

introduced in [12]. This section firstly defines the criteria of lepton identification and then103
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addresses the means to suppress the background. This will be done under two assumptions:104

1) model independent 2) model dependent, i.e. assuming a Higgs boson as predicted by the105

Standard Model. The latter excludes decay modes in which the Higgs boson decays invisibly.106

4.1 Lepton Identification107

The task is to identify the muons and electrons produced in the decay of the Z boson.108

In a first step, the energy deposition in the electromagnetic calorimeter (EECAL), the total109

calorimetric energy Etotal and the measured track momentum Ptrack are compared accordingly110

for each final state particle. The lepton identification is mainly based on the assumption that111

an electron deposits all its energy in the electromagnetic calorimeter while a muon in the112

considered energy range, see Figure 2, passes both the electromagnetic and the hadronic113

calorimeter as a minimal ionising particle. The observables and cut values are summarised in114

Table 4.1. The motivation of the cut values can be inferred from Figure 3 where the spectra115

for the corresponding lepton type in the relevant momentum range P > 15 GeV are compared116

with those from other particles are displayed.

P (GeV)
0 20 40 60 80

0

100

200

300

400

P of lepton candidates

Figure 2: Momentum range of the final state leptons as produced in Z → µ+µ− decays from
e+e− → HZ events at

√
s = 250GeV.

117

µ-Identification e-Identification
EECAL/Etotal < 0.5 > 0.6
Etotal/Ptrack < 0.3 > 0.9

The criteria to estimate the quality of the lepton identification and hence the signal
selection are the Efficiency and Purity. These are defined as follows:

Efficiency =
Ntrue∩iden

Ntrue

5
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Figure 3: Distributions of the variables for lepton identification of lepton candidates and
other particles with P > 15 GeV.

Purity =
Ntrue∩iden

Niden

Here Ntrue defines the generated number of the corresponding lepton type and Niden defines118

the reconstructed number of the corresponding lepton type according to the selection criteria.119

For electrons and muons with P > 15 GeV in the signal samples the obtained values are listed120

in Table 4.121

µ ID in µµX e ID in eeX

Ntrue 31833 34301
Ntrue∩iden 31063 33017
Niden 33986 34346
Efficiency 97.6% 96.3%
Purity 91.4% 96.1%

Table 4: Lepton ID Efficiency and Purity for reconstructed particles with P > 15 GeV.

The efficiencies and purities are well above 95% except for the purity of the muon identifi-122

cation. This is caused by final state charged pions which pass the detector as minimal ionising123
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particles and which are indistinguishable from muons with the applied selection criteria. This124

deficiency is partially balanced by the fact that two leptons of the same type with opposite125

charge are required for the reconstruction of the Z boson and that they should yield the mass126

of the Z boson. Indeed, using the above selection cuts, the efficiency to identify both leptons127

from the Z boson decay is 95.4% for the case Z → µµ and 98.8% for the case Z → ee. Note,128

that the cut on P > 15 GeV has been omitted in this case.129

4.2 Track Selection130

As the invariant mass of the Z boson and thus the recoil mass will be calculated from the131

four momenta of the LDC Tracks, badly measured LDC Tracks need to be discarded from132

the analysis. The track quality can be estimated by the ratio ∆P/P 2 where the uncertainty133

∆P is derived from the error matrix of the given track by error propagation.134
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Figure 4: 2D ∆P/P 2 distribution vs. cosθ (left) and ∆P/P 2 distribution vs. track momen-
tum (right) of muon candidates
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Figure 5: 2D ∆P/P 2 distribution vs. cosθ (left) and ∆P/P 2 distribution vs. track momen-
tum (right) of electron candidates

The Figures 4 and 5 show, for muons and electrons separately, the dependency of ∆P/P 2
135

on the polar angle cosθ and on the track momentum P . For reasons discussed in the following136

the latter has been restricted to |cosθ| < 0.78, i.e. the central region. For both variables the137

distributions exhibit for muon tracks a narrow band with well measured momenta equivalent138

to small ∆P/P 2. The track quality decreases as expected towards large |cosθ|, i.e. towards139

the acceptance limits of the TPC which motivates the restriction to the central region when140

displaying ∆P/P 2 versus P . These distributions show a decrease in track quality towards141

small particle momenta as expected from multiple scattering effects. Beyond that, it is142

clearly visible that for electrons the situation is much more diluted and the number of badly143
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measured tracks is significantly higher than that for muons. This can be explained by the144

Bremsstrahlung of the electrons in the detector material.145

The procedure for track rejection is developed for the better measured muon induced146

tracks:147

• For |cosθ| < 0.78 the shape of ∆P/P 2 versus P is approximated by:

δ(1/P ) = ∆P/P 2 = a⊕b/P = c(P ); with a = 2.5×10−5 GeV−1 and b = 8×10−4. (1)

Tracks are rejected if δ(1/P ) > 2c(P ).148

• For |cosθ| > 0.78 tracks are rejected if ∆P/P 2 < 5× 10−4 GeV−1.149

The cuts are indicated in Figure 4 and 5 and underline that tracks created by electrons150

are rejected considerably more often which will reduce the number of reconstructed Z bosons151

in the corresponding channel.152

4.3 Background Rejection153

The recoil analysis is based on the identification of the di-lepton system as produced by the154

decay of the Z boson. It is thus necessary to distinguish the processes which lead to two155

leptons in the final state as given in Table 1 and Table 2 from the ones produced in the156

Higgs-strahlung process.157

For the Higgs-strahlung process the invariant mass of the di-lepton system Mdl should be158

equal to the Z boson mass while the invariant mass of the recoiling system, Mrecoil is expected159

to yield the introduced mass of the Higgs boson of 120 GeV. It is unlikely that combinations160

of background processes fulfil both conditions at once. This argumentation is supported by161

Figures 6 and 7 which show the invariant mass distributions for the di-lepton system and162

the recoil mass for both, the di-lepton system consisting of muons and the di-lepton system163

consisting of electrons. These distributions suggest to restrict the analysis to the following164

mass ranges:165

• 80 < Mdl < 100 GeV166

• 115 < Mrecoil < 150 GeV167

In a next step the selection is to be made by means of the different kinematic properties.168

In the following the variables used to distinguish signal events from background events will169

be introduced.170

• Acoplanarity acop, see Figure 8: As for e+e− collisions with beams of equal energy the171

centre-of-mass system is at rest, it is expected that in processes in which the leptons172

are produced at the Z∗ vertex these two leptons are back-to-back in azimuth angle.173

The distance in azimuth angle is expressed by the acoplanarity acop, defined as acop =174

|φ`+ − φ`− |, where φ`± is the azimuth angle of the an individual lepton of the di-175

lepton system. If the particles are produced from a intermediate particle with a given176

transverse momentum, the exact back-to-back configuration is modulated. Therefore a177

cut on 0.2 < acop < 3 is applied.178
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Figure 6: Normalised signal and background distributions of the invariant mass of the di-
lepton system Mdl for the µ+µ−X (top) and e+e−X Channel (bottom). Here, ττ refers to
the µµ or ee created in the decay of ττ . Note that the Pre-cuts defined in Section 3 have
been applied to the µµ background sample.
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Figure 7: Normalised signal and background distributions of the recoil mass Mrecoil distribu-
tions for the µ+µ−X (top) and the e+e−X Channel (bottom). Here, ττ refers to the µµ or
ee created in the decay of ττ . Note that the Pre-cuts defined in Section 3 have been applied
to the µµ background sample.
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Figure 8: Normalised signal and background distributions of the acoplanarity acop for the
µ+µ−X-Channel (top) and e+e−X-Channel (bottom). Here, ττ refers to the µµ or ee created
in the decay of ττ . Note that the Pre-cuts defined in Section 3 have been applied to the µµ
background sample.
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• Transverse Momentum PTdl of the di-lepton system, see Figure 9: As the Higgs-179

strahlung process can be interpreted as a two body decay, both bosons gain equal180

transverse momentum which is conserved by their decay products. The total final state181

for muon pair production or Bhabha Scattering has in first approximation no transverse182

momentum. In order to suppress this background, a cut PTdl > 20 GeV of the di-lepton183

system is applied. This cut cannot suppress events in which initial state radiation of184

the incoming beams leads to a transverse momentum of the colliding system. This case185

will be discussed separately.186

• cosθmissing: this cut discriminates events which are unbalanced in longitudinal mo-187

mentum, essentially, those of the type e+e− → l+l−γ. The distributions in Figure 10188

motivate a cut on |cosθmissing| < 0.99.189

The last introduced cut also suppresses events with initial state radiation happening ap-190

proximately collinear with the incoming beams. The final state in e+e− → µ+µ−(e+e−) can,191

however, gain sizeable transverse momentum by initial state radiation of a high energetic pho-192

ton. Figure 11 shows the correlation between the transverse momentum PTγ of a detected193

high energetic photon, assumed to be created by initial state radiation, and the transverse194

momentum PTdl of the di-lepton system for both, events in which only a muon pair is created195

at the Z∗- Boson vertex and signal events. The first type shows a clear correlation in trans-196

verse momentum. In order to suppress this background the variable ∆PTbal. = PTdl − PTγ197

is introduced which is shown in Figure 12 for signal events and background events superim-198

posed with each other. By selecting events with ∆PTbal. > 10 GeV, a considerable fraction199

of background can be suppressed. It should finally be noted that background events of type200

e+e− → µ+µ−(e+e−) which are undergoing final state radiation are suppressed by the re-201

quirement that the lepton should yield the Z boson mass.202

The number of events remaining after each of these cuts for signal and backgrounds are203

given in Tabs. 5 through 8 for two beam polarisations and the different compositions of the204

di-lepton system. The combination of cuts will be later referred as MI Cuts. Please note that205

the cut variables fL and |∆θ2tk| will be introduced later.206

From the tables the following conclusions can be drawn207

• The requirement to have two well measured leptons retains always more than 95% of208

the signal while it suppresses in most of the cases the largest part of background events.209

• The requirement of a minimum PTdl of the di-lepton system is very efficient for events210

in which the di-lepton system is produced directly at the Z∗ vertex, see Figure 1. This211

type of background is further reduced by comparing the transverse momentum of the212

di-lepton system with the transverse momentum of a radiative photon. The cut is213

particulary efficient to suppress background events generated by Bhabha Scattering.214

• Although largely suppressed, the number of events generated by Bhabha background215

still exceeds the number of signal events. This remains an irreducible background.216

• The acoplanarity acop is particularly efficient against background in which the di-lepton217

system is composed by τ - Leptons. The larger mass of this particle reduces the phase218

space for radiative processes. Hence this lepton type is more often produced in a back-219

to-back configuration than the lighter lepton types.220
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Figure 9: Normalised signal and background distribution of the transverse momentum PTdl

of the dilepton system for the µ+µ−X Channel (top) and the e+e−X-Channel (bottom).
Here ττ refers to the µµ or ee created in the decay of ττ . Note that the Pre-cuts defined in
Section 3 have been applied to the µµ background sample.
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Figure 10: Normalised signal and background distributions of the |cosθmissing| of the system
of undetected particles for the µ+µ−X-Channel (top) and e+e−X-Channel (bottom).
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Figure 12: ∆PTbal. distributions for background by e+e− → µ+µ− and signal in the µµX-
channel.

The tables demonstrate that mostly events in which the di-lepton system is produced221

at the Z∗ vertex can be efficiently rejected by the defined cuts. The background by events222

in which two bosons are produced, i.e. e+e− → ZZ/γγ or e+e− → W+W−, is less well223

distinguishable from the signal events. As these events however have slightly different spectra.224

Further rejection can be achieved by a multi-variate analysis of a set of suited discriminative225

variables. These variables are introduced in the following.226

• The γ-pair production leads to a flat distribution in the di-lepton mass spectrum in the227

Z-mass region The shape of the invariant mass Mdl of the di-lepton system and hence228

also that of the transverse momentum PTdl of the di-lepton system can be employed to229

suppress background from γ-pair production.230

• The production of Z boson and W boson pairs happens predominantly via exchange231

reactions which lead to a strong increase of the differential cross section towards large232

absolute values of the cosine of the polar angle. On the contrary, the Higgs-strahlung233

process is expected to decrease towards the forward and backward direction. Therefore234

the polar angle spectrum as shown in Figure 13 of the di-lepton system is expected to235

discriminate between signal events and background from Z and W pair production.236

• The acollinearity, defined as acol = acos(P`+P`−/|P`+ ||P`− |), is sensitive to the boost237

of the di-lepton system. In case of Z pair production the decay products are expected238
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Figure 13: Normalised signal and background distribution of the cosine of the polar angle
cosθdl of the di-lepton system for the µ+µ−X Channel (top) and the e+e−X-Channel (bot-
tom). Here ττ refers to the µµ or ee created in the decay of ττ . Note that the Pre-cuts
defined in Section 3 have been applied to the µµ background sample.
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to be boosted more strongly than in the case of Higgs-strahlung. This results in a239

different position of the Jacobian Peak in the dσ/d(acol) differential cross section as240

demonstrated in Figure 14.241

The likelihood of an event to be the signal is defined as LS =
∏

PS
i , where the PS

i is the242

probability of the event to be the signal according to the PDF of the signal of the ith selection243

variable. Similarly, the likelihood of an event to be the background is defined as LB =
∏

PB
i .244

Hereafter, the Likelihood Fraction is defined as fL = LS/(LS + LB), which is within (0, 1).245

The Figures 15 through 18 outline the optimisation procedure in the likelihood analysis246

separately for the two analysis channels and polarisation modes using the four variables247

introduced above, for details see [13]. It is clearly visible that the separation between signal248

and background improves towards small values of fL. The cut on fL is optmised according249

to the maximum in the significance S/
√

S + B where S and B are the number of remaining250

signal and background events, respectively. The cut on fL is adjusted for each polarisation251

mode of the incoming beams and the type of the di-lepton system under study.252

The final number of events also included in Tables 5 through 8 shows that with the multi-253

variate analysis the number of background events are further reduced by roughly 50% while254

the major part of the signal events is kept.255

5 Model Dependent Analysis256

If the analysis of the Higgs-strahlung process is restricted to modes in which the Higgs can257

solely decay into charged particles as e.g. suggested by the Standard Model, hence introducing258

a Model Dependency, the different track multiplicities can be used for the separation of signal259

and background events. The Higgs boson decays into oppositely charged particles such that260

events with less than four tracks can be considered as background. Figure 19 shows the261

number of reconstructed tracks beside the ones from the di-lepton system for final states of262

the types µµX, µµ, ττ and µµνν.263

As expected, the Higgs-strahlung process leads to a considerable amount of charged par-264

ticles while processes with a low multiplicity of charged particles also create only a small265

number of tracks. The distributions tell that a large fraction of events have exactly two266

additional tracks beside those of the di-lepton system. The two additional tracks originate267

from two sources.268

• Tracks created by charged particles by H → τ+τ− and the subsequent decays of the269

τ -Leptons into charged particles.270

• Tracks created by photon conversion. This photon may be created by initial state271

radiation.272

The first type of events need to be kept in the signal as the τ -Leptons constitute an273

important analyser to determine e.g. quantum numbers like CP of the Higgs boson [2].274

The second type of events can be rejected by taking into account that the opening angle of275

e+e− pair created by photon conversion is expected to be very small. This is underlined by276

Figure 20 which shows the angular difference ∆θ2tk between the two additional tracks. While277

the signal events result in a flat distribution, the background events exhibit a strong maximum278

around ∆θ2tk = 0. This observation motivates the a cut |∆θ2tk| > 0.01. The di-lepton system279

of a given type might be contaminated from particles of the other type. Therefore, the polar280

angle of each of the two particles of the di-lepton system is also compared with the polar281
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Figure 14: Normalised signal and background distribution of angle acol between the partners
of the di-lepton system for the µ+µ−X Channel (top) and the e+e−X-Channel (bottom).
Here ττ refers to the µµ or ee created in the decay of ττ . Note that the Pre-cuts defined in
Section 3 have been applied to the µµ background sample.
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Figure 15: The distributions of the Likelihood Fraction fL (left), the number of remaining
events versus the cut on fL (middle), and the significance versus fL cuts (right). The dis-
tributions are shown for the µµX-channel in the Model Independent Analysis and for the
polarisation mode e−Le+

R.
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Figure 16: The distributions of the Likelihood Fraction fL (left), the number of remaining
events versus the cut on fL (middle), and the significance versus fL cuts (right). The dis-
tributions are shown for the eeX-channel in the Model Independent Analysis and for the
polarisation mode e−Le+

R.
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Figure 17: The distributions of the Likelihood Fraction fL (left), the number of remaining
events versus the cut on fL (middle), and the significance versus fL cuts (right). The dis-
tributions are shown for the µµX-channel in the Model Independent Analysis and for the
polarisation mode e−Re+

L .

angle of the additional tracks, defining the observable ∆θmin as shown in Figure 21. Again,282

a strong maximum around ∆θmin = 0 can be observed which suggests the cut ∆θmin > 0.01283

Tables 9 through 12 give the resulting number of events after each cut applied under the284

assumption that the Higgs boson decays into Standard Model particles. Note, that the cut285

on the transverse momentum of the di-lepton system has been omitted in order to maximise286

the number of signal events. The combination of cuts will be later referred as MD Cuts. The287

numbers in the tables show that the cuts introduced for the additional tracks allow for an288

entire suppression of backgrounds with a small multiplicity of charged particles in the final289
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tributions are shown for the eeX-channel in the Model Independent Analysis and for the
polarisation mode e−Re+
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Figure 19: Number of additional tracks (Nadd.TK) for µµX, µµ, ττ and µµνν final states.

state. It has to be pointed out that in particular the background from Bhabha events can be290

removed almost completely. On the other hand at least 50% of the signal is retained by the291

cuts.292

Again the remaining major background is given by events in which vector bosons pairs293

are produced. This background is further reduced by a likelihood analysis as described above.294

The results of this likelihood analysis is also given in Tables 9 through 12. From these tables,295

it can be deferred that the fL cuts reject the background from Z pair production by a factor296

of two, and reduce the signal by only 10%. At the same time, the background µµ, ee, ττ ,297

µµνν and eeνν is entirely suppressed.298
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Figure 20: Distribution of ∆θ2tk, which is the ∆θ between two additional tracks for Nadd.TK =
2, for signal events (µµX) and background by muon pair production (µµ).

5.1 Tables of Background Rejection299

MI, µ+µ−X, e−L e+
R

Nevts Remained µ+µ−X µ+µ− τ+τ− µ+µ−νν µ+µ−ff

Before any restriction 2918 (100.0%) 2.6M 1.6M 111k 317k
+ Lepton ID
+ Tightened Pre-Cuts 2472 (84.72%) 9742 4582 9268 8175
+ PTdl > 20GeV 2408 (82.50%) 7862 3986 8462 7222
+ Mdl ∈ (80, 100)GeV 2292 (78.54%) 6299 2679 5493 5658
+ acop ∈ (0.2, 3.0) 2148 (73.61%) 5182 112 5179 5083
+ ∆PTbal. > 10GeV 2107 (72.20%) 335 80 4705 4706
+ |∆θ2tk| > 0.01 2104 (72.11%) 149 80 4647 4676
+ |cosθmissing| < 0.99 2046 (70.09%) 82 80 4647 3614
+ Mrecoil ∈ (115, 150)GeV 2028 (69.48%) 75 80 3642 2640
+ fL > 0.26 1596 (54.68%) 41 0 1397 1125

Table 5: Number of events remained after each cut for the µ+µ−X channel in the MI Anal-
ysis. Fractions of number of events remained of the Higgs-Strahlung process are given inside
parentheses, the last one gives the efficiency of signal selection. The polarisation mode is
e−L e+

R.
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MI, e+e−X, e−L e+
R

Nevts Remained e+e−X e+e− τ+τ− e+e−νν e+e−ff

Before any restriction 3138 (100.0%) 4.3G 1.6M 147k 110k
+ Lepton ID
+ Tightened Pre-Cuts 2019 (64.33%) 43607 6422 13196 12548
+ PTdl > 20GeV 1962 (62.50%) 39152 5551 12054 10583
+ Mdl ∈ (80, 100)GeV 1755 (55.93%) 25501 3806 7786 7509
+ acop ∈ (0.2, 3.0) 1645 (52.41%) 23228 245 7239 6739
+ ∆PTbal. > 10GeV 1606 (51.16%) 1725 157 6286 5904
+ |∆θ2tk| > 0.01 1603 (51.09%) 990 157 6150 5844
+ |cosθmissing| < 0.99 1564 (49.83%) 679 157 6149 4643
+ Mrecoil ∈ (115, 150)GeV 1539 (49.04%) 576 41 4824 3335
+ fL > 0.28 1153 (36.74%) 243 29 2019 1217

Table 6: Number of events left after each cut for the e+e−X channel in the MI Analy-
sis. Fractions of number of events remained of the Higgs-Strahlung process are given inside
parentheses, the last one gives the efficiency of signal selection. The polarisation mode is
e−L e+

R.

MI, µ+µ−X, e−Re+
L

Nevts Remained µ+µ−X µ+µ− τ+τ− µ+µ−νν µ+µ−ff

Before any restriction 1967 (100.0%) 2.0M 1.2M 9k 291k
+ Lepton ID
+ Tightened Pre-Cuts 1667 (84.73%) 6696 3471 1048 5324
+ PTdl > 20GeV 1623 (82.48%) 5419 3037 957 4600
+ Mdl ∈ (80, 100)GeV 1544 (78.47%) 4347 2092 702 3530
+ acop ∈ (0.2, 3.0) 1448 (73.60%) 3592 113 656 3169
+ ∆PTbal. > 10GeV 1421 (72.21%) 229 81 632 2873
+ |∆θ2tk| > 0.01 1419 (72.10%) 101 81 625 2851
+ |cosθmissing| < 0.99 1379 (70.10%) 54 81 625 2065
+ Mrecoil ∈ (115, 150)GeV 1367 (69.49%) 50 81 487 1506
+ fL > 0.19 1165 (59.20%) 28 0 243 752

Table 7: Number of events left after each cut for the µ+µ−X channel in the MI Analy-
sis. Fractions of number of events remained of the Higgs-Strahlung process are given inside
parentheses, the last one gives the efficiency of signal selection. The polarisation mode is
e−Re+

L .

22

[Higgs-2_1]  HZ



MI, e+e−X, e−Re+
L

Nevts Remained e+e−X e+e− τ+τ− e+e−νν e+e−ff

Before any restriction 2107 (100.0%) 4.3G 1.2M 17k 1.1M
+ Lepton ID
+ Tightened Pre-Cuts 1352 (64.16%) 40896 5257 1469 10198
+ PTdl > 20GeV 1313 (62.33%) 36742 4546 1351 8430
+ Mdl ∈ (80, 100)GeV 1177 (55.88%) 23993 3051 943 5909
+ acop ∈ (0.2, 3.0) 1103 (52.36%) 21846 107 881 5266
+ ∆PTbal. > 10GeV 1077 (51.11%) 1612 92 805 4517
+ |∆θ2tk| > 0.01 1076 (51.05%) 927 92 799 4465
+ |cosθmissing| < 0.99 1050 (49.82%) 638 92 799 3484
+ Mrecoil ∈ (115, 150)GeV 1033 (49.04%) 539 12 586 2521
+ fL > 0.16 909 (43.14%) 326 4 368 1294

Table 8: Number of events left after each cut for the e+e−X channel in the MI Analy-
sis. Fractions of number of events remained of the Higgs-Strahlung process are given inside
parentheses, the last one gives the efficiency of signal selection. The polarisation mode is
e−Re+

L .

MD, µ+µ−X, e−L e+
R

Nevts Remained µ+µ−X µ+µ− τ+τ− µ+µ−νν µ+µ−ff

Before any restriction 2918 (100.0%) 2.6M 1.6M 111k 317k
+ Lepton ID
+ Tightened Pre-Cuts 2472 (84.72%) 9742 4582 9268 8175
+ Nadd.TK > 1 2453 (84.05%) 604 842 145 6321
+ |∆θ2tk| > 0.01 2449 (83.91%) 63 816 14 6254
+ |∆θmin| > 0.01 2417 (82.81%) 38 261 1 5711
+ acop ∈ (0.2, 3.0) 2256 (77.29%) 32 0 1 5051
+ |cosθmissing| < 0.99 2189 (75.00%) 16 0 1 3843
+ Mrecoil ∈ (115, 150)GeV 2154 (73.81%) 15 0 1 2830
+ fL > 0.17 1911 (65.49%) 11 0 0 1387

Table 9: Number of events left after each cut for the µ+µ−X channel in the MD Analy-
sis. Fractions of number of events remained of the Higgs-Strahlung process are given inside
parentheses, the last one gives the efficiency of signal selection. The polarisation mode is
e−L e+

R.
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MD, e+e−X, e−L e+
R

Nevts Remained e+e−X e+e− τ+τ− e+e−νν e+e−ff

Before any restriction 3138 (100.0%) 4.3G 1.6M 147k 110k
+ Lepton ID
+ Tightened Pre-Cuts 2019 (64.33%) 43607 6422 13196 12548
+ Nadd.TK > 1 2004 (63.87%) 3136 1740 374 10202
+ |∆θ2tk| > 0.01 2001 (63.77%) 655 1073 79 10095
+ |∆θmin| > 0.01 1969 (62.75%) 155 128 6 9271
+ acop ∈ (0.2, 3.0) 1840 (58.62%) 134 0 6 8366
+ |cosθmissing| < 0.99 1792 (57.11%) 91 0 6 6696
+ Mrecoil ∈ (115, 150)GeV 1731 (55.16%) 73 0 1 4950
+ fL > 0.27 1378 (43.90%) 27 0 0 1652

Table 10: Number of events left after each cut for the e+e−X channel in the MD Analy-
sis. Fractions of number of events remained of the Higgs-Strahlung process are given inside
parentheses, the last one gives the efficiency of signal selection. The polarisation mode is
e−L e+

R.

MD, µ+µ−X, e−Re+
L

Nevts Remained µ+µ−X µ+µ− τ+τ− µ+µ−νν µ+µ−ff

Before any restriction 1967 (100.0%) 2.0M 1.2M 9k 291k
+ Lepton ID
+ Tightened Pre-Cuts 1667 (84.73%) 6696 3471 1048 5324
+ Nadd.TK > 1 1654 (84.07%) 415 391 9 4160
+ |∆θ2tk| > 0.01 1651 (83.93%) 41 379 0 4108
+ |∆θmin| > 0.01 1629 (82.81%) 22 105 0 3739
+ acop ∈ (0.2, 3.0) 1522 (77.34%) 20 0 0 3312
+ |cosθmissing| < 0.99 1476 (75.03%) 11 0 0 2438
+ Mrecoil ∈ (115, 150)GeV 1453 (73.85%) 10 0 0 1803
+ fL > 0.17 1289 (65.53%) 8 0 0 875

Table 11: Number of events left after each cut for the µ+µ−X channel in the MD Analy-
sis. Fractions of number of events remained of the Higgs-Strahlung process are given inside
parentheses, the last one gives the efficiency of signal selection. The polarisation mode is
e−Re+

L .
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Figure 21: Distribution of ∆θ between muon candidates and additional tracks, for the signal
events (µµX) and background by muon pair creation (µµ).

MD, e+e−X, e−Re+
L

Nevts Remained e+e−X e+e− τ+τ− e+e−νν e+e−ff

Before any restriction 2107 (100.0%) 4.3G 1.2M 17k 1.1M
+ Lepton ID
+ Tightened Pre-Cuts 1352 (64.16%) 40896 5257 1469 10198
+ Nadd.TK > 1 1342 (63.69%) 2935 1500 22 8227
+ |∆θ2tk| > 0.01 1340 (63.60%) 617 859 4 8133
+ |∆θmin| > 0.01 1319 (62.59%) 146 57 0 7388
+ acop ∈ (0.2, 3.0) 1232 (58.47%) 125 0 0 6651
+ |cosθmissing| < 0.99 1201 (57.00%) 84 0 0 5265
+ Mrecoil ∈ (115, 150)GeV 1161 (55.10%) 67 0 0 3886
+ fL > 0.32 889 (42.20%) 20 0 0 1119

Table 12: Number of events left after each cut for the e+e−X channel in the MI Analy-
sis. Fractions of number of events remained of the Higgs-Strahlung process are given inside
parentheses, the last one gives the efficiency of signal selection. The polarisation mode is
e−Re+

L .
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6 Extraction of Higgs Mass and the Higgs production Cross300

Section301

In the previous section the criteria to select the signal events and to suppress the background302

from various sources have been introduced and applied. The remaining spectra are a super-303

position of signal and background events convoluted with beam effects. In the following, the304

relevant observables as the Higgs boson mass MH and the total Higgs-strahlung cross section305

σ are extracted. Note in passing, that the results for the eeX-channel will always contain a306

small admixture of the ZZ fusion process.307

As indicated above, the resulting spectrum is composed by several components. This308

motivates to approximate this spectrum in a non-parametric way using a Kernel Estimation309

as introduced in [14] and applied in [15, 16]. In order to reduce the effort of finding a parent310

function using either the already simulated data set or by simulating another independent311

set of data a so-called Simplified Kernel Estimation is proposed.312

The signal spectrum is approximated by the following function:313

FS(x) =
1
N

m∑
j=1

njG(x; tj ;hj) (2)

with

hj =
(

4
3

)1/5

N−1/5∆x

√
N

nj
, (3)

Here G is a Gaussian with the parameters µ = tj where tj is the center of the jth bin314

of a histogram with m bins and σ = hj where hj is the smoothing parameter of bandwidth315

of the individual Gaussians placed around the bin centers. The parameter ∆x is assumed to316

the the standard deviation in each bin and nj

∆xN is an estimate for the parent distribution.317

By the transformation x → x′ = x −mH , the approximated function becomes sensitive to318

the value of the Higgs-Mass.319

The background is approximated by a second order Chebyshev polynomial. By this statis-320

tical fluctuations in the remaining background events are smoothened. Using this polynomial321

as input the background is generated again with 40 times higher statistics. Therefore, statis-322

tical uncertainties are nearly excluded. The combination of signal and background is finally323

fitted by the sum of the signal and the background functions.324

The simulated signal sample is separated into two sets of data. One of them, the Reference325

Sample, is employed to determine all fit parameters except the normalisation N of the signal326

signal and the actual Higgs mass, MH. The normalisation N and the Higgs mass MH enter327

as free parameters of the fit to the second sample, the Result Sample. The spectra of the328

Result Sample, scaled to a luminosity of L=250 fb−1, including the defined fitting function329

are displayed in Figures 24 and 25 for the Model Independent Analysis and in Figures 26330

to 27 for the Model Dependent Analysis. The fit based on the Kernel estimation for the331

signal part describes the shape of the mass spectra very well and are therefore suited for the332

extraction of the relevant parameters which are listed in Table 13 for the Model Independent333

Analysis and in Table 14 for the Model Dependent Analysis. In [13] alternative fit methods334

are discussed which lead to nearly identical results.335
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Pol. Ch. MH (GeV) σ (fb)
e−Re+

L µ+µ−X 120.006 ±( 0.039 ) 7.89 ± 0.28 ( 3.55 %)
L = 250 fb−1 e+e−X 120.005 ±( 0.092 ) 8.46 ± 0.43 ( 5.08 %)

merged 120.006 ±( 0.036 ) 8.06 ± 0.23 ( 2.91 %)
e−L e+

R µ+µ−X 120.008 ±( 0.037 ) 11.70 ± 0.39 ( 3.33 %)
L = 250 fb−1 e+e−X 119.998 ±( 0.085 ) 12.61 ± 0.62 ( 4.92 %)

merged 120.006 ±( 0.034 ) 11.96 ± 0.33 ( 2.76 %)

Table 13: Resulting Higgs mass MH and cross section σ of the MI Analysis using Kernel
Estimation.

Pol. Ch. MH (GeV) σ (fb)
e−Re+

L µ+µ−X 120.008 ± 0.037 7.88 ± 0.26 ( 3.30 %)
L = 250 fb−1 e+e−X 120.001 ± 0.081 8.46 ± 0.38 ( 4.49 %)

merged 120.007 ± 0.034 8.06 ± 0.21 ( 2.66 %)
e−L e+

R µ+µ−X 120.009 ± 0.031 11.68 ± 0.32 ( 2.74 %)
L = 250 fb−1 e+e−X 120.007 ± 0.065 12.58 ± 0.46 ( 3.66 %)

merged 120.009 ± 0.028 11.97 ± 0.26 ( 2.19 %)

Table 14: Resulting Higgs mass MH and cross section σ of the MD Analysis using Kernel
Estimation.

6.1 Discussion of the Results336

The Higgs mass can be determined to a precision of the order of 0.03% when the eeX channel337

and the µµX are combined. Regarding the individual results, it can be deferred that the338

precision in the µµX channel is more than two times smaller than that of the eeX Channel339

This increase of the error is mainly induced by bremsstrahlung of the electrons in the detector340

material. This can be concluded by comparing the results between Tables 13 and 14 as for341

the latter the background of Bhabha scattering is suppressed while the difference in the342

precision between the two decay modes of the Z bosons remains the same. The precision343

on the cross section is less sensitive to this experimental drawback as it is derived within a344

basically arbitrary mass window. The derived values for the Model Dependent Analysis are345

consistently slightly more precise. The relatively small difference of the results confirms that346

the methods employed for background suppression in the Model Independant Analysis are347

already very efficient.348

∆Mtot. (MeV) ∆Mmac. (MeV) ∆Mdec. (MeV)
µµX 650 560 330
eeX 750 560 500

Table 15: Mass Resolution with contributions by machine (∆Mmac.) and detector (∆Mdet.)
separated.

The width of the Higgs boson mass as shown before is mainly given by a convolution of349

detector uncertainties and uncertainties on the energy of the incoming beams. Uncertainties350

on the energy of the incoming beams are imposed by accelerator components such as the351

initial linac, the damping rings or, in the case of electrons, by a tentative undulator in the352

electron beam line. Another source of uncertainty is the beamstrahlung when particles of a353
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Figure 22: Comparisons of recoil mass spectra in generator level and after full simulation,
for the µµX-channel (left) and the eeX-channel (right).

beam bunch interact in the electromagnetic field of the opposite one. The Figure 22 shows354

the Higgs mass spectrum before and after full detector simulation. The detector response355

leads only to small additional widening of the maximum of the recoil mass distribution.356

Using a Gaussian fit to the left side of the recoil mass distribution, the width before detector357

simulation can be quantified to be 560 MeV while it increases to 650 MeV for the µµX channel358

after detector simulation, see Table 15. For the given configuration, the uncertainty on the359

incoming beams remains the dominant contribution to the observed width even for the eeX360

channel.361

On the Control of Systematic Errors362

Naturally, the measurement of the Higgs mass is sensitive to the calibration of the detector363

and the beam energies as the Higgs mass is directly computed from the four momenta of the364

particles composing the di-lepton system and the centre-of-mass energy. Both uncertainties365

can be controlled by the measurement of the e+e− → ZZ process as the Z mass is known to366

a few MeV and the cross section for Z pair production is approximately 40 times higher than367

that of the Higgs-strahlungs process. Once the detector is calibrated the Higgs-strahlung368

process can be used to determine, within reasonable limits, arbitrary Higgs masses. The369

algorithms presented in this note are also suited for the quantification of the systematic370

error. Note, that the systematic error of the cross section determination might be easier to371

control by using a smaller set of cut variables than those presented above. Such a set could372

comprise only the invariant mass and the transverse momentum of the di-lepton system, Mdl,373

PTdl or, in case of the model dependant analysis, the number of additional tracks, Nadd,TK .374

The expected increase of the statistical error is only about 10%.375

6.1.1 Recovery of Bremsstrahlungs Photons376

The lower precision obtained in the eeX-Channel is due to the Bremsstrahlung of the final377

state electrons in the passive material of the detector. In the following an attempt is made to378

improve the precision in that channel by recovering the bremsstrahlungs photons [17]. The379

four momenta of the selected electrons are combined with those of photons which have a small380

angular distance to the electrons. If these combined objects together with the corresponding381

other electron candidate form the Z mass, they are included in the Z reconstruction. The382

inclusion of low energetic photons leads to a penalty in the momentum reconstruction due to383
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the poor energy resolution of the electromagnetic calorimeter for low energetic particles. This384

drawback might get counterbalanced by the gain in statistics due to the described recovery385

of the energy loss.386

Figure 23 shows the recoil mass spectrum after the recovery of the Bremsstrahlungs pho-387

tons. The worse resolution around the mass maximum is clearly visible. The corresponding388

results are given Tables 16 through 17 and the fitted spectra in Figures 28 through 29. The389

numbers show that the mass resolution is improved by 10% while the precision in the cross390

section is improved by 20%. The cross section benefits directly from the gain in statistics391

while the determination of the recoil mass suffers from the reduced momentum resolution.392
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Figure 23: Comparison of the Higgs recoil mass distributions of e+e−X channel with and
without the bremsstrahlung photons recovery.

Ana. Pol. Ch. S (%) B
MI e−Re+

L e+e−X 1029 (48.84%) 1408
e−L e+

R e+e−X 1491 (41.51%) 3394
MD e−Re+

L e+e−X 1152 (54.66%) 1114
e−L e+

R e+e−X 1724 (54.94%) 1513

Table 16: Resulting Number of Signal (S) and Number of Background (B), and the efficiencies
of signal selection (in the parentheses) after background rejection, for eeX channel with
Bremsstrahlung Photons Recovery

7 Conclusion and Outlook393

Using mainly the Higgs-strahlung process with the Z boson decaying leptonically and a Higgs394

boson mass of 120 GeV as input, the current design of the ILD detector promises to deter-395

mine the mass of the Higgs boson to a precision of the order of 30MeV. According to [18]396
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Ana. Pol. MH (GeV) σ (fb)
MI e−Re+

L 120.003 ± 0.081 8.41 ± 0.36 ( 4.28 %)
e−L e+

R 119.997 ± 0.073 12.52 ± 0.49 ( 3.91 %)
MD e−Re+

L 119.999 ± 0.074 8.41 ± 0.31 ( 3.69 %)
e−L e+

R 120.001 ± 0.060 12.51 ± 0.38 ( 3.04 %)

Table 17: Resulting Higgs mass MH and cross section σ for the Model Independent Analy-
sis and Model Dependent Analysis of the Higgs-Strahlung pr ocess of e+e−X channel with
Bremsstrahlung photons Recovery.

and references therein, such a precision renders sensitivity to effects from super-symmetric397

extensions to the Standard Model. Assuming a heavier Higgs, the precision might allow also398

for the determination of the Higgs boson mass width at centre-of-mass energies higher than399

250 GeV. Staying with small Higgs masses, it has been demonstrated semi-analytically [18]400

and confirmed with full simulation studies [19] that the precision can be further increased by401

working at a centre-of-mass energy close to the HZ production threshold, i.e. at
√

s=230 GeV.402

In the present study, the cross section and therefore the coupling strength at the HZZ vertex403

is determined to a precision of the order of 2-3% which might already be sufficient to get404

sensitive to contributions to this coupling from physics beyond the Standard Model.405

The signal to background ratio can be enhanced to a value of at least 30% even if the406

cross sections of the background processes are several orders of magnitudes higher. The407

background suppression exploits the considerable capabilities of track recognition as allowed408

by the current design of the ILD detector. The precision of the measurement can be improved409

by a better muon recognition by e.g. including a muon system in the analysis which has not410

been done so far. The precision obtained in the branch in which the Z boson decays into411

electrons might gain considerably from a revision of the amount of passive material in the412

detector. Both decay modes may gain also from an exploitation of the particle identification413

of the ILD detector by means of a dE/dx measurement in the TPC. For this, further studies414

are needed. A future study clearly will have to quantify the systematic uncertainties and415

to identify those which have the largest influence on the systematic errors. This would give416

important directions on the final detector layout and the precision needed for e.g. alignment417

systems. For such a study realistic inputs on e.g. the uncertainty of drift times in the TPC418

or residual misalignments after detector movements are needed.419

The analysis has proven that the results are sensitive to details of the accelerator config-420

uration. Using the set of parameters as has been chosen for the SLAC samples which in turn421

correspond to the current best knowledge of the beam parameters, approximately half of the422

statistical error is generated by uncertainties caused by beamstrahlung and the energy spread423

of the incoming beams. The Higgs-strahlung process constitutes an important benchmark424

for the optimisation of the accelerator performance.425
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Figure 24: Reconstructed Higgs mass spectrum together with the sum of underlying back-
ground for the Model Independent Analysis for the µµX-channel (top) and eeX-channel
(bottom). The polarisation mode is e−Le+

R. The lines show the fits using the Simplified Kernel
Estimation fitting formula to the signal and a polynomial of second order to the background
as explained in the text.
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Figure 25: Reconstructed Higgs mass spectrum together with the sum of underlying back-
ground for the Model Independent Analysis for the µµX-channel (top) and eeX-channel
(bottom). The polarisation mode is e−Re+

L . The lines show the fits using the Simplified Kernel
Estimation fitting formula to the signal and a polynomial of second order to the background
as explained in the text.
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Figure 26: Reconstructed Higgs mass spectrum together with the sum of underlying back-
ground for the Model Dependent Analysis for the µµX-channel (top) and eeX-channel (bot-
tom). The polarisation mode is e−Le+

R. The lines show the fits using the Simplified Kernel
Estimation fitting formula to the signal and a polynomial of second order to the background
as explained in the text.
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Figure 27: Reconstructed Higgs mass spectrum together with the sum of underlying back-
ground for the Model Dependent Analysis for the µµX-channel (top) and eeX-channel (bot-
tom). The polarisation mode is e−Re+

L . The lines show the fits using the Simplified Kernel
Estimation fitting formula to the signal and a polynomial of second order to the background
as explained in the text.
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Figure 28: Reconstructed Higgs mass spectrum after the recovery of Bremsstrahlungs photons
together with the sum of underlying background for the Model Independent Analysis for eeX-
channel. The polarisation mode is e−Le+

R (top) and e−Re+
L (bottom). The lines show the fits

using the Simplified Kernel Estimation fitting formula to the signal and a polynomial of
second order to the background as explained in the text.
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Figure 29: Reconstructed Higgs mass spectrum after the recovery of Bremsstrahlungs photons
together with the sum of underlying background for the Model Dependent Analysis for eeX-
channel. The polarisation mode is e−Le+

R (top) and e−Re+
L (bottom). The lines show the fits

using the Simplified Kernel Estimation fitting formula to the signal and a polynomial of
second order to the background as explained in the text.

36

[Higgs-2_1]  HZ



References426

[1] The LEP Electroweak Working Group, arXiv:0811.4682 [hep-ex] (November 2008) and updates for 2009427

summer conferences, see http://lepewwg.web.cern.ch/LEPEWWG/plots/summer2009/.428

[2] The Higgs Working Group at Snowmass ’05, arXiv:hep-ph/0511332 (November 2005).429

[3] W. Lohmann et al. Prospects to Measure the Higgs Boson Mass and Cross Section in ee→ ZH Using the430

Recoil Mass Spectrum, arXiv:0710.2602v1 [hep-ex] (October 2007).431

[4] M. Ruan et al., A precision determination of Higgs mass using the fully simulated Higgs-strahlung process432

e+e− → hZ→ hµµ at ILC, CARE-Note-2008-0013-ELAN433

[5] M. Battaglia et al., arXiv:hep-ex/0603010v1 (March 2006).434

[6] The ILD Group, ILD - Letter of Intent, http://www.ilcild.org/documents/ild-letter-of-intent435

(2009).436

[7] W. Kilian, T. Ohl, J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC ,437

arXiv:0708.4233 [hep-ph] (August 2007).438

[8] D. Schulte, GUINEA-PIG - An e+e− beam simulation program, PhD Thesis University of Hamburg439

(1996).440

[9] M. Berggren, Talk in ILD Optimisation Meeting 13/5/09,441

http://ilcagenda.linearcollider.org/conferenceDisplay.py?confId=3585.442

[10] http://ilcsoft.desy.de.443

[11] The GEANT4 collaboration, NIM A 506 (2003) 250-303.444

[12] J.C. Brient, Measurement of the Higgs Mass and e+e− → ZH cross sections at Linear Colliders, LC-445

PHSM-2000-049.446
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