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1 Intreduction

The statistical analysis of data is an important part of mest experiments in nuclear and
particle physics. Some decades ago physicists were usually well educated in basic statistics
in contrast to their colleagues in social and medical sciences. Today the situation is almost
reversed. Very sophisticated methods are used in these disciplines, whereas in particle physics
standard analysis tools available in many program packages seemn to make a knowledge of
statistics obsolete. This leads to strange habits, like the determination of the r.m.s of a
sample through a fit to a Gaussian. More severe are a widely spread ignorance about the
(lack of} significance of ¥ tests with o large number of bins and missing experience with
unfolding methods.

There exist many good monographs on statistical methods in data analysis [1, 2, 3, 4, 5, 6].
It is not intended to compete with these, but to concentrate on an aspect which is rarely
discussed, namely the fact that in modern experiments acceptance and resolution have to be
corrected through a comparison of experimental data with Monte Carle simulations.

The purpose of a measurement is usually to verify a theory, to determine one or several
unknown parameters, or, if little or nothing is predicted, to measure a physical quantity or
a distribution of it.

The first case - testing a hypothesis - is the simplest. It will be treated in chapter 3, where
we discuss the usnal x? comparison of the measurement and the simulation. We also sketch
empirical distribution function (EDF) tests like the Kolmogorov-Smirnov test, which are not
as much appreciated by particle physicists as they should. In this chapter we also sketch the
statisties of weighted events, a tool that is also needed in the following chapters.

In the forth chapter we present the standard method to fit Monte Carlo distributions to data
using the least square and maximum likelihood methods. During the parameter iteration
prucess the Monte Carlo distributions have to be modified. It is shown how this can be done
Ly weighting the events thus avoiding to repeat the generation. Sometimes it is possible
to use moments or other estimators to infer parameters from a sample. Examples for an
efficient use of this method are given. Finally a technique to reduce the number dimensions
in multivariate distributions without loss of information is discussed.

The fifth chapter deals with the more complex problem of unfolding. The standard least
square unfolding method is closely related to parameter fitting, however in addition one has
to deal with oscillations of the unfolded distributions. Several different unfolding techniques
and regularization schemes are discussed, including iterative and binning free methods.

In chapter 6. finally, we study confidence intervals and discuss the computation of upper and
lower limits from a Bayesian point of view.

Throughout this article the emphasis 1s put on applications. The reader is assumed to
e fammiliar with Lasic statistics. We will study simple examples, mostly one-dimensional
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distributions and one parameter fits to simplify the presentation. The generalization to the
multivariate case and the determination of a set of parameters is straight forward and will
be indicated where necessary.

This report will certainly contain errors, misleading statements, sectivns which are unclear
and misprints. I would appreciate very much, if yon could communicate them to me.
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2 Some definitions and preliminaries

Some of the following definitions become relevant only in the subsequent chapters. For
convenience we state them already here.

2.1 "True” and “observed” distributions

A density f(z) of a variable z s measured by an apparatus with finite rescluticn. The
probability density f'(#') to measure the quantity 2’ is given by

o
) = / Wt 2) ()l (1)
~
where we call £ the transfer function which includes simearing and acceptance losses. {The
convolnted variables and functions will always be marked with a prime.)

Tu infer the transfer finction the detector response is simulated. Meonte Carlo events are
generated according to a “true” distribution g(z}, which is chosen close to the expectation
for f{ix). The simulation of the detector ineluding trigger and reconstruction produces events
following an “observed” distribution ¢'{a’).

') = [: L ) gla)de (2)

The data analysis is based on a sample of N experimental events characterized by the values
i

wy of the variable & and a sample of M simulated Monte Carlo events characterized by
pairs of variables ;. 2}, Thus the functions /" and ¢' are not known analytically, but enly

indirectly and with statistical uncertainties.

Normally it is cheaper to generate a Monte Carlo event than to collect a real event. Thus the
nmumber of simulated events will be higher than that of the experimental ones and the sta-
tistical uncertainty on their distributions will be correspondingly smaller. Ideally the Monte
Carlu errors can be neglected. This simplifies the analysis considerably. Unfortunately, in
most cases we will have to include the statistical uncertainties from the simulation .

Usnally we combine events in bins (we will discuss exceptions later) of @ or &', respectively.
The content of Lin 12 is d,, {in,) for the experimental (Monte Carlo) event sample, and ),
(m:‘) for the corresponding measured histograms. The number B of x-bins may be different
from the number B’ of x-bins. For the simulated events we know also the number i, of
events generated in bin v and observed in bin p.

The integrals {1) and (2} become sums and the transfer function ¢ and becomes a matrix T,
where T, is the probability for an event in the true interval ¥ to be found in bin g of the

-1
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smeared distribution.

du’ [, do t{x
To = Juda' f, de tla’, x)f (x) )
f,dx f (1 )
J d fdu(’ 2a(z)
.{u d'r: g ( ’)
(The integration limits are given by the bin Loundaries. Throughout this paper we omit
details of sums and integrals, where these are obvious from the context.)

The approximation (4} is the better, the smaller the bins and the closer the agreement of

af{z) and f(x).
Z Tty (5)

w53y Lm, (6)
v

The Relations (5) and (6) suffer from statistical fluctuations, and (8) in addition from the
approximation {4). The equalities are thercfore only approximate.

An estimate T of the transfer matrix T is obtained from the Monte Carlo sirmilagion

T 7 WL {7)

In order to test whether the functions g(i) and f{z) agree it is not necessary to determine
1" explicitly. One has just to compare the "observed” distributions rI,':‘ and m,:‘.

if we know f{x} = g{x, A) up to an unknown parameter A, we have ro vary A and together
with it g, until the agreement with 4, is optimum.

In the worst case f(x) is completely unknown, then we have to unfold the observed distriloa-
tion d,. This can in principle be done by inverting the matrix 7', but as will be shown below,
this straight forward methed, and also other nnfolding recipes are not without problems.

2.2 Weighted events, equivalent number of events

Frequently we have to handle weighted events, In the old days of bubble chamber experi-
ments, for instance, decay distributions were corrected Ly compnting event weights from the
potential flight length. Nowadays Monte Carlo simulations have replaced these weighting
techniques, but there are still cases where weighting is useful. a commeon one is backgronnd
subtraction using negative weights. Alsc Monte Carlo samples frequently cunsist of weighted
events. Modifying weights helps to avoid the repeated generation of events.

The statistical error of a sum of N weighted events with weights w;

Y
n= Ewi {8)
B
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by = \/ﬁ (9)

We define a number 7, the equivaleni number of events which is the number of unweighted

events having the same relative error as the weighted sum.
& 1 &n
o (10)
7 N

We obtain

fi= (w2 w (i)

For example a mixture of 10 events with weight 1 and of 10 events with weight 2 has the
same statistical significance as 18 (equivalent) unweighted events.

The concept of equivalent event mumbers is discussed in more detail in the Appendix A.
There we see that equivalent event-numbers follow distributions which are very similar to the
Puisson distribution. This property is very useful for the likelihood aralysis of experiments
with low event numbers.

9
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3 Comparing a measured distribution to a simulated
one

In this section we study goodness of fit tests without bothering whether a parameter has
Leen adjusted or not. The purpose is less hypothesis testing but the detection of systematic
errozs. A comprehensive and rather complete review is given in Ref. [9] We start with an
example and then consider the general problem. -

3.1 A simple example

In Figure la we compare a measured histogram to a Monte Carlo prediction. For simplieity
we assume that we can neglect the statistical Huctuations of the simulation. From a visual
inspection of the plot we recognize a significant excess of Monte Carlo events at large x values
and a corresponding deficit at the left hand peak.

3.1.1 The y%-test

Assuming that the simulation describes the data, the numbers o, will follow Poisson distri-
butions with mean m;, and varisnce 7. {We neglect Monte Carlo fiuctuations.) The x? for
the histogram {Fig. 1} is

(d;l — m:‘)2

f
771“

=3

i

(12)

We get a value of 90 for 72 bins (NDF), which is perfectly acceptable, contrary to the visual
impression. The corresponding x%-prabability is 7 %.

What does this mean? By how much is the theoretical (Monte Carlo) distribution allowed to
deviate from the data to be acceptable? In the Appendix B we estimate, that the minimum

detectable systematic error ay is
Bl/-‘l
. Gy X W (1‘3}
where B is the number of bins and N the total number of events. A necessary condition for
the validity of {13) is that the systematic deviation is not oscillating, but extends over many

bins and that B is large enough to approximate the ¥? distribution by a Gaussian.

From the Relation (13) we learn, that the significance of a x* test decreases in most cases
with increasing number of bins.

x?-tests with large number of bins have little significance. On the other hand strongly
localized systematic deviations, - which rarely occur - are only detectable with not too wide
bins.
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